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Abstract

Positive Energy Districts (PEDs) have been proposed as a holistic approach to urban de-
carbonization. PEDs are defined as delimited areas that produce, annually, more energy
than they consume. The methodology proposed for PED assessment integrates multicrite-
ria decision-making geospatial analysis and weighted overlay techniques to assess PED
suitability across different dimensions. Data harmonization is included as part of the mod-
eling process, ensuring methodological consistency across diverse contexts. The approach
employs a layer overlay and aggregation through a weighting average process, calibrated
through stakeholder input, to reflect local priorities and urban-specific conditions in order
to identify the potential areas for PED implementation. Geospatial datasets provided as
inputs are processed to produce maps that reflect the PED suitability index for the city
districts according to the selected dimensions. As a result, the open-source developed
MCDA algorithm provides maps that facilitate the identification of relevant zones for PED
feasibility. The algorithm was applied in Bratislava city, understanding its identification
potential, adaptability and scalability to other cities. The obtained results highlight the
most interesting districts in which to build a PED in Bratislava, promoting the algorithm as
a replicable decision-making tool for advancing PED identification and deployment.

Keywords: Positive Energy Districts; Multi-Criteria Decision Analysis; Geographical
Information Systems; district dssessment; energy; feasibility

1. Introduction
The transition towards sustainable urban development requires a shift from central-

ized, fossil-fuel-based energy systems to decentralized, renewable-driven models. Cities
are responsible for over 70% of global energy consumption and CO2 emissions [1], re-
quiring the adoption of innovative solutions to meet ambitious climate targets. In this
context, Positive Energy Districts (PEDs) emerge as a key strategy, aiming to create ur-
ban areas that generate more renewable energy than they consume. PEDs represent a
fundamental shift in urban energy planning, integrating high-efficiency buildings, smart
grids, renewable energy production, and flexible energy management within a selected
district [2,3]. Building on earlier concepts such as nearly/net zero energy buildings and
energy-positive neighborhoods [3,4], PEDs extend the focus from single buildings to the
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district scale to better exploit synergies between diverse building typologies, infrastructures
and urban functions [4,5].

PEDs are defined as energy-efficient and energy-flexible urban areas or groups of con-
nected buildings that produce net zero greenhouse gas emissions and actively manage an
annual local or regional surplus of renewable energy, requiring the integration of multiple
systems and infrastructures while ensuring “a good life for all” in line with social, economic
and environmental sustainability [2,6]. PEDs should therefore be understood as one compo-
nent within a broader urban decarbonization portfolio, rather than a stand-alone solution
for the full emissions and energy footprint associated with urban areas. In this sense,
PEDs remain valuable as a practical, district-scale pathway to accelerate the integration
of efficiency, local renewables, flexibility and smart energy management, while providing
replicable planning and decision-support approaches that cities can scale and combine
with wider mitigation measures. However, the PED concept remains heterogeneous in
practice, where multiple and partially overlapping definitions coexist, differing in system
boundaries, energy balance metrics and the treatment of off-site resources [4,5,7]. This
lack of consensus complicates the operationalization and comparison of PEDs and poses
challenges for the development of robust assessment frameworks and design tools.

At the same time, PEDs are increasingly recognized as complex socio-technical systems
embedded in wider urban and regional contexts, where technological, institutional and
social dimensions co-evolve. The work in [4] conceptualizes PEDs as complex adaptive
systems linked to resilience and broader sustainability frameworks, while ref. [6] identifies
interdependent challenges and rank governance, social factors, market conditions and
technical issues as critical success factors for PED implementation. Previous research on
Positive Energy Districts and sustainable plus-energy neighborhoods shows that PED
planning and design are highly context-dependent, requiring early and explicit energy
ambitions, strong collaboration between stakeholders, and adaptation of measures to local
institutional and energy system conditions [8]. Stakeholder engagement and cross-sectoral
collaboration are essential to ensure that PEDs deliver not only energy and emissions
benefits, but also social acceptance and co-created solutions [5,6].

Different methodological approaches have been proposed to support the design and
assessment of PEDs. The research in [9] presents a calculation methodology to achieve
PEDs in cities, while ref. [7] compares several energetic assessment methodologies and
shows that requiring a strictly positive annual energy balance can be a demanding pre-
requisite that excludes many urban districts with limited local renewable potential. They
argue instead for more holistic assessment schemes that combine quantitative energy in-
dicators (e.g., energy balance, flexibility, self-sufficiency) with environmental, economic
and social key performance indicators [7]. At a process level, ref. [10] reviews existing PED
design methodologies and introduces PlanPED framework that structures the planning,
design and implementation of PEDs, addressing the lack of energy planning culture and
adequately skilled staff in many cities while emphasizing the need for practical, stepwise
tools for municipalities.

Methodologies typically in the PED definition include technology feasibility [3],
evaluation of energy balances and system configurations [7,9], or development of
decision-making tools and structured design workflows [5,8,10]. It is important to high-
light the role of Geographical Information Systems (GISs) in the evaluation of the urban
context, where high-resolution geolocated data has a significant impact on providing ac-
curate results for decision-making processes. GIS-based methodologies have been widely
used in renewable energy potential assessments and in multi-criteria spatial analyses
for energy planning, such as PV (photovoltaic) site selection [11,12], micro-hydropower
suitability [13,14] and wind farm location studies [15,16]. In most of these studies, high-

https://doi.org/10.3390/en19041030

https://doi.org/10.3390/en19041030


Energies 2026, 19, 1030 3 of 20

resolution spatial data have been crucial for accurate analysis, especially for technical
criteria such as solar irradiation, terrain, land use and proximity to infrastructure [11–16].
By contrast, socio-economic data are often less readily available or up-to-date in some
regions [16], and several studies emphasize the importance of freely available data sources,
which are particularly beneficial in regions with limited analytical resources [11,15].

Advances in geospatial artificial intelligence and data-intensive geospatial analytics
provide a clear opportunity to extend GIS–MCDA suitability workflows beyond static, map-
based screening. Combining GIS with AI/ML and MCDA can strengthen urban planning
decision support by adding data-driven insights and predictive layers to expert-based
multicriteria evaluation [17]. At the same time, the rapid growth of geospatial data from
remote sensing and IoT sensors creates opportunities to update key spatial indicators at
higher temporal resolution, improve local context representation and enable near-real-time
suitability monitoring and more dynamic PED boundary delineation that requires scalable
data processing and integration [18].

Although GIS-based studies provide valuable insights for renewable energy plan-
ning, they are not specifically tailored to the identification and delineation of PEDs. In
the framework of the EU project MAKING-CITY, ref. [19] proposes a flexible GIS-MCDA
methodology to identify suitable PED areas, considering resource availability (solar, wind,
geothermal, water, biomass and waste heat), urban macro-form, land-use context, vir-
tual and physical energy infrastructures, and socio-economic and socio-cultural aspects.
Their work demonstrates the potential of GIS-Multi-Criteria Decision Analysis (MCDA) to
support the early stages of PED planning and to inform district selection at city level. How-
ever, the suggested approach could have limitations related to data availability, requiring
harmonized layers to be covered with datasets from public sources.

Overall, existing PED research reveals several interrelated gaps. First, there is a lack of
standardized, transparent and replicable spatial methodologies for systematically screening
urban areas to identify those with the highest potential for PED development, using criteria
that are both conceptually grounded and operational in practice [4,5,7,10,19]. Second,
despite increased attention to replication and upscaling in different projects, methods for
PED site selection are rarely designed from the outset to be transferable across different
cities with heterogeneous data conditions [8,10,19]. Third, although MCDA is widely used
in GIS-based energy planning, the sensitivity of spatial suitability results to the choice
of weighting schemes, which is relevant in participatory decision-making with multiple
stakeholders, has received limited explicit attention in the PED literature.

The successful deployment of PEDs requires accurate, transparent and replicable
methodologies for site selection that can be seamlessly integrated with existing urban
infrastructure. To address these challenges, this study develops a GIS-based spatial as-
sessment framework that enables urban planners to identify optimal locations for PEDs,
explicitly designed with replication in mind thanks to the integration of variables that
could be fitted with public datasets. The research is guided by two main questions: how
GIS-based methodologies can be used to optimize the spatial identification of suitable areas
for PEDs, and which factors influence the replicability of PED planning approaches in di-
verse urban environments. To answer them, the proposed analytical framework integrates
energy-related, socio-economic and land-use datasets for PED site selection, and establishes
a replicability assessment model that defines key parameters for adapting PED concepts
across cities. By pursuing these objectives through a GIS-based MCDA, the study aims to
provide a decision-support framework for policymakers and urban planners, enhancing
spatial planning and policy development at the municipal level, facilitating PED deploy-
ment, regulatory alignment, and ultimately contributing to the broader urban sustainability
agenda with practical tools and strategies for identifying and implementing PEDs.
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2. Materials and Methods
This study demonstrates a GIS-based decision-support methodology developed to

evaluate urban areas or municipalities, identifying districts with higher potential to evolve
into Positive Energy Districts (PEDs). The proposed method is built to cover a structured
workflow that requires the provision of the following steps: (i) definition of city needs
and priorities, (ii) collection and preparation of spatial/non-spatial datasets, (iii) creation
and normalization of GIS layers, (iv) weighting and overlay analysis, (v) generation of
suitability maps under alternative weighting scenarios, and (vi) validation/approval of
scenarios with local stakeholders through co-creation activities to select the most promising
areas for further PED detailed design. These steps are represented in Figure 1 and connected
with the MCDA algorithm workflow.

 

Definition of city 
needs and priorities 
(Baseline for weights 

definition)

Collection and 
preparation of 

spatial/non-
spatial datasets

Creation and 
normalization 
of GIS layers 

Weighting 
and 

overlay 
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scenarios
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with local 
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Final definition 
of potential PED 

candidates

1 2 3 4 5 6

USER INPUTS

ALGORITH INTERNAL PROCESS

CO-CREATION

Figure 1. Potential PED identification workflow. The arrows connect the steps where user input,
co-creation, and the algorithm is requested.

The assessment is organized around five PED-related dimensions selected via thor-
ough literature review: efficient buildings, net zero energy imports, energy flexibility,
affordability, and livability. Each dimension needs to be represented by one or more spatial
layers in the MCDA implementation to reduce bias and ensure balanced coverage of tech-
nical, socio-economic and urban-form drivers in PED identification. It should be noted that
the layers used in the identification of potential PED areas represent the current dynamics
of each variable, such as, for example, current energy demand, but do not consider their
dynamic evolution in the future. The complete workflow is implemented in Python 3.12,
and requires city-specific datasets and expert knowledge to define weights and validate
the results, improving both automation in obtaining results and the transferability of the
methodology to other areas.

2.1. Multi-Criteria Decision Analysis Methodology

The required activities in the GIS-based Multi-Criteria Decision Analysis (MCDA) are
presented in Figure 2 and used to compute a composite PED suitability index through four
conceptual steps: (i) definition of PED dimensions and variables, (ii) normalization and
suitability assessment of the corresponding GIS layers, and (iii) weighting and overlay
aggregation to (iv) produce the final index making feasible scenario comparison. These
four conceptual steps are defined below:

• Geospatial database construction: The first step is the definition of relevant variables
to identify a PED. Once variables are selected and grouped to configure the dimensions,
each variable is represented as a spatial vector GIS layer (GeoJSON format). When
inputs are tabular (e.g., district socio-economic statistics), attributes are joined to
spatial geometries (districts/parcels/buildings) to create the vector layer, enabling
subsequent spatial analyses.

• Normalization and suitability classification: To make heterogeneous indicators com-
parable, each GIS layer is rasterized and normalized onto a common five-class suit-
ability scale (0–100). Normalization is percentile-based (i.e., adapted to each layer’s
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distribution), ensuring comparability even when absolute values differ between cities
and/or districts. This makes it easier to combine indicators in a composite index
for the MCDA process, avoiding the effect of outliers in the analysis by generating
homogeneous classes for comparison purposes. The final suitability classes defined
per layer are: 0 (not suitable), 25 (least suitable), 50 (moderate suitable), 75 (highly
suitable), 100 (most suitable).

• Weighting and aggregation: Normalized raster layers are combined using weighted
averages to compute dimension-level rasters, which are then normalized again and
aggregated (weighted average) into the final PED suitability index.

• Scenario implementation: A baseline scenario using equal weights for layers and
dimensions is produced, comparable with city-specific scenarios that are produced by
adjusting weights through stakeholder consultations, enabling exploration of trade-
offs and local priorities.

 

Figure 2. Overview of the data processing workflow included in the Multi-Criteria Decision Analysis
algorithm. The arrow represents that all processes are sequential and linked together.

2.2. Data Collection for Layers Development

The development of the GIS layers used in the MCDA framework required the system-
atic collection of heterogeneous datasets, combining city-provided information and open
datasets from EU services like CORINE Land Cover from the Copernicus Land Monitoring
Service (CLMS) [20]. The selection of data to create the layers follows the definition of five
PED dimensions (efficient buildings, net zero energy imports, energy flexibility, affordabil-
ity, and livability), where each dimension is represented by a set of geolocated variables.
Data requirements were structured according to the layer inventory presented in Table 1,
which links each dimension/subdimension to the target layer or layers and the specific
datasets needed to generate them.
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Table 1. Requested datasets to create each layer and PED dimension.

Dimension Subdimension Layer and Description Requested Data

Efficient
buildings

Building stock
characterization

Heating energy demand per m2 Cooling energy
demand per m2 DHW energy demand per m2

Electrical energy demand per m2

Building typology, use and occupancy
patterns Buildings geometries

Net zero
energy
imports

RES potential Solar energy potential Wind energy potential
Geothermal potential Biomass potential

LiDAR data DTM and DSM
Buildings geometries PVGIS data [21]

Energy
flexibility

Alternative
energy resources

Industrial area (heat) Water bodies (heating and
cooling) Forest areas (biomass)

Urban Atlas Land Cover [22]
CORINE Land Cover [20]

Affordability Economic
context

Share of energy expenditure in income
Investment plan existence

District values on income level City
statistical data

Livability
Social cohesion

Aging rate Per capita income level Ownership
of the property Employment rate per district

Vulnerability Population density/change

District values on income level and
property City statistical data The

Humanitarian Data Exchange [23]

Urban
complexity

Residential and other land uses balance Location
of green areas Building density

Urban Atlas Corine Land Cover
OSM buildings Cadaster

Once collected, in some cases, datasets need to be prepared to ensure consistency
with the requirements of the MCDA processing algorithm. In this sense, a common data
model was adopted where input layers are delivered as vector files (GeoJSON format)
with harmonized attributes. Several layers require dedicated algorithms (e.g., demand
modeling, Renewable Energy Sources (RESs) potential computation) to obtain the inputs
required in the MCDA algorithm.

2.2.1. Efficient Buildings

The efficient buildings dimension represents building energy needs that were esti-
mated using data from the building stock characteristics (building use, height, year of
construction and occupancy patters), creating four intensity layers calculated in kWh/m2:
heating, cooling, domestic hot water (DHW) and electricity demand. Demand was esti-
mated through equations following the methodological framework provided by the Energy
Performance of Buildings Directive (EPBD) [24]. Required inputs include building typology,
use and occupancy patterns, as well as building geometries. Outputs are provided as vector
layers (GeoJSON format) for each building energy demand component. Higher energy
demand represents areas with greater potential for a PED implementation due to their
decarbonization potential.

2.2.2. Net Zero Energy Imports

The net zero energy imports dimension evaluates the potential for local renew-
able generation to reduce external energy dependence by integrating solar (rooftop and
land), wind (rooftop and land), geothermal and biomass resources. Computation uses
CARTIF-developed algorithms within the RENERMap project (Dynamic map of renewable
potential at municipality scale) [25], requiring LiDAR data or DTM/DSM models, building
and parcels boundaries, Leaf Area Index (LAI) values, fraction of covered area in forest land
and solar radiation and wind velocities from PVGIS. Constraint layers (e.g., roads, railways,
forest/protected areas, power lines) are used to exclude non-available land for energy
generation. Outputs are multiple GeoJSON layers including rooftop/land solar potential
(by PV technology), wind (rooftop and land by technology) potential, and geothermal
and biomass potentials, all of them measured in kWh/m2. In this case, areas with higher
renewable energy potential are more suitable as candidates for the implementation of a
PED, as they can produce the energy requested to cover the demand with renewables.
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The estimation of renewable energy potential is based on a set of geospatial algorithms
designed to work at both the building and land-parcel scale. These algorithms integrate
high-resolution spatial data, climate data and environmental constraints to characterize
exploitable areas for RES implementation and those with limitations or that are unsuitable.
In the case of solar resources, the methods differ between rooftop and ground-mounted
installations and consider different photovoltaic technologies (crystalline silicon (crys), and
amorphous silicon (amf)), while also considering geometric factors such as orientation and
slope, shading effects and regulatory restrictions. Wind potential is assessed for rooftop and
ground-mounted installations, considering both vertical and horizontal axis technologies
and their specific performance and constraints related to location and available resources.
Geothermal potential is assessed based on the thermal properties of shallow soil and the
available installation area close to the consumption spaces, while biomass potential is
derived from sustainable forest growth as a limiting factor and vegetation structure.

2.2.3. Energy Flexibility

The energy flexibility dimension represents the district’s capacity to integrate alter-
native or flexible energy resources. It could be determined by analyzing proximity to:
(i) industrial heat sources, (ii) water bodies for heating and cooling, and (iii) biomass re-
sources (forest areas). Urban Atlas and Corine Land Cover are used to select the areas
covered by the required land used. The outputs are GeoJSON polygon layers representing
industrial areas, water bodies and forest areas, used subsequently for the development of
proximity metrics in the MCDA algorithm. To understand the effect of these variables in
PED identification, it should be noted that areas closer to renewable energy resources are
more attractive for the deployment of PEDs.

2.2.4. Affordability

The affordability dimension transforms socio-economic factors into quantitative values
suitable for comparison and overlay. It includes indicators such as the share of energy
expenditure in income and the existence of investment plans (with brownfield location
and distance as an optional proxy). Data collection relies on local data collected at city
level. In order to create an affordability index as a dimension in the MCDA algorithm, the
vector layers that represent the district energy-expenditure and brownfield locations are
required as inputs. For the affordability dimension, areas with higher economic resources
and ongoing investment plans have more interest as candidates for the implementation of
a PED.

2.2.5. Livability

This dimension is divided into two subdimensions that worked as two specific dimen-
sions in the MCDA process: social cohesion and urban complexity. The social cohesion
subdimension captures community vulnerability and resilience using indicators like aging
rate, per capita income, property ownership, employment rate, a composite vulnerability
index, and population density or specific change. Inputs are collected through question-
naires at city level and local statistics collected at district level, being complemented with
external population-density sources (Humanitarian Data Exchange). Outputs are pro-
duced as district-level GeoJSON layers suitable for rasterization and integration into the
MCDA. The urban complexity subdimension evaluates urban form and livability through:
(i) green space accessibility (including forest), (ii) mixed-use patterns (calculated using
the Shannon index), and (iii) building density, plus the balance between residential and
other land uses. Data sources include Urban Atlas, Corine Land Cover and complementary
datasets such as OSM (OpenStreetMap) [26] building and cadaster. Outputs are GeoJSON
layers representing buildings, green spaces and land-use polygons, enabling derivation of
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density/proximity and mixed-use metrics. Vulnerable areas (low income, aged or low em-
ployment rate) need to be prioritized for a PED deployment, while urban ecosystems with
high building density, low urban spaces and land diversification are also functional areas
for the development of a PED. From an energy-justice perspective, these vulnerable dis-
tricts are more exposed to energy poverty, having lower adaptive capacity to energy price
volatility and climate stressors, so PED measures can yield disproportionate social benefits
like lower bills or improved comfort. On the other hand, dense and space-constrained
urban areas concentrate demands facilitating collective solutions as shared generation or
storage, improving techno-economic feasibility.

2.3. Implementation of the Python-Based MCDA Framework

The complete GIS–MCDA workflow (Figure 3) has been implemented and automated
in Python 3.12 as a modular and scalable pipeline, designed for replication across cities
with minimal adaptation (mainly the definition of weights). The implementation relies
on open-source libraries, primarily GeoPandas for vector processing and Rasterio for raster
operations, and is structured into: (i) configuration and data ingestion, (ii) spatial harmo-
nization/geoprocessing, (iii) normalization, weighting and suitability characterization, and
(iv) output generation.

 

Figure 3. MCDA algorithm linkages, including the inputs for the suitability index calculation. The
arrows provide information about the flow of information in the execution of the algorithm.

To ensure comparability across layers, a common data model is applied in the Python
pipeline. Input layers are provided as GeoJSON files, and all data are reprojected to a com-
mon CRS (ETRS89-extended/LAEA Europe, EPSG:3035), clipped to municipal boundaries,
and rasterized to a shared spatial resolution (5 m). A resolution of 5 m is selected to ensure
accurate differentiation of areas within the urban environment, as each pixel represents an
area of 25 m2. For the economic indicators (created at district level), the resolution is main-
tained to guarantee comparability, even though there is no differentiation in pixel values
between districts. The pipeline performs reprojection, clipping, rasterization/resampling,
proximity analysis (where needed), percentile-based reclassification to the 0–100 suitability
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scale, and weighted overlay aggregation to produce the final PED suitability index and
scenario maps as raster files in GeoTIFF format.

3. Case Study and Scenario Definition
The proposed GIS–MCDA framework has been applied in Bratislava through the

Py-thon algorithm in order to validate it into a real urban context. Thus, the objective is
twofold: first, to demonstrate the operationalization of the methodology under real data
availability and policy constraints; and second, to assess how locally defined priorities
influence the spatial identification of areas with high potential for Positive Energy District
(PED) development.

Bratislava was selected as a representative medium-sized European capital facing
typical challenges associated with historic urban fabric, energy-intensive building stock,
and limited municipal fiscal autonomy. The case study is part of the ATELIER project,
whose objectives involve the development of a city-specific replication plan, the application
of the GIS-MCDA tool for potential PED areas selection, and a structured co-creation
process with local stakeholders for PED design in the selected areas.

3.1. Bratislava Case Study Context

Bratislava is the capital and largest city of the Slovak Republic and represents a
compact metropolitan area characterized by a heterogeneous building stock, a strong
presence of heritage-protected zones, and a high reliance on centralized energy systems.
These features make the city a particularly relevant case for testing spatial decision-support
tools aimed at identifying feasible locations for PEDs.

From a strategic perspective, Bratislava has committed to ambitious climate and
energy objectives through its long-term development strategy Bratislava 2030 [27], which
prioritizes energy efficiency, renewable energy deployment, sustainable mobility and
climate resilience. Such a strategic plan has defined the city’s development plan since its
approval in June 2022. The city is also part of the European Mission for Climate-Neutral
and Smart Cities [28], targeting climate neutrality by 2030. This policy alignment provides
a favorable framework for PED experimentation, while simultaneously imposing stringent
requirements on feasibility, scalability and social acceptance.

Bratislava faces several structural limitations that directly affect PED implementation.
The city operates within a highly centralized fiscal system, with limited financial autonomy
and strong dependence on national redistribution mechanisms. This constrains the capacity
for large-scale public investment and increases reliance on European funding programs.
Additionally, a significant share of the building stock consists of post-war residential blocks
and historically protected buildings, which pose technical and regulatory challenges for
deep energy retrofitting and on-site renewable energy integration.

From an energy system perspective, Bratislava is characterized by an extensive district
heating network that plays a central role in urban energy supply. Ongoing decarbonization
efforts include the integration of waste-to-energy, wastewater heat recovery and future
renewable heat sources. This makes the city an interesting testing ground for PED con-
cepts that rely not only on building-level interventions but also on district-scale energy
infrastructure and sector coupling.

3.2. Weighting Schemes and Scenario Design

To test the approach, a baseline scenario was first generated using equal weights across
all layers inside the dimension and within-dimensions. Equal weights have been considered
for the variables within the dimension and between dimensions to establish a baseline
scenario avoiding the introduction of subjective or arbitrary biases by the analyst, In this
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sense, equal weights produce a control scenario (baseline) that can be used to evaluate
by small changes the sensitivity of each variable and dimension in the PED identification
process. A second scenario was then produced using revised, city-specific weights reflecting
Bratislava’s priorities (e.g., higher emphasis on energy demand and rooftop crystalline PV
and geothermal potential). The weights of the layers in each of the scenarios are presented
in Table 2 while the weights of each dimension per scenario are defined in Table 3. The
results could provide a comparative spatial analysis of suitability for PED implementation
under both scenarios, showing how alternative weighting strategies modify the spatial
distribution of least-to-most suitable areas for PED development.

Table 2. Weights per layer given by Bratislava stakeholders and equal weights assignment * (crys:
crystalline silicon; amf: amorphous silicon).

Dimension and
Subdimension Layers Weight of Each

Layer (%): Equal
Weight of Each

Layer (%): Experts

Efficient
buildings

Heating energy demand per m2 (kWh/m2) 25 20
Cooling energy demand per m2 (kWh/m2) 25 25
DHW energy demand per m2 (kWh/m2) 25 30

Electrical energy demand per m2 (kWh/m2) 25 25

Net zero energy
imports

Solar energy potential rooftop crys (kWh/m2) * 11.11 40
Solar energy potential rooftop amf (kWh/m2) * 11.11 0

Solar energy potential land crys (kWh/m2) * 11.11 0
Solar energy potential land amf (kWh/m2) * 11.11 0

Wind energy potential rooftop (kWh/m2) 11.11 5
Wind energy potential land vertical axis(kWh/m2) 11.11 5

Wind energy potential land horizontal
axis (kWh/m2) 11.11 0

Geothermal potential (kWh/m2) 11.11 40
Biomass potential (kWh/m2) 11.11 10

Energy
flexibility

Distance to industries (heat) 33.34 60
Distance to water surfaces (heating and cooling) 33.33 20

Distance to forest (biomass) 33.33 20

Affordability Share of energy expenditure in income 50 30
Investment plan existence//Brownfields distance 50 70

Livability
(Social cohesion)

Aging rate 16.66 0
Per capita income level 16.67 15

Ownership of the property 16.67 40
Employment rate per district 16.66 15

Vulnerability 16.67 15
Population density/change 16.67 15

Livability
(Urban complexity)

Residential and other land uses balance 33.34 30
Proximity to green space 33.33 50

Building density 33.33 20

As was previous explained, the equal-weight configuration was used as a neutral
reference to avoid introducing biases and to ensure that all PED dimensions contribute
uniformly to the composite index. Following this initial run, the baseline maps and
district-level indicators were discussed with Bratislava stakeholders through a structured
co-creation activity, defined as a participatory process in which local actors jointly (i) review
suitability outputs, (ii) assess their relevance and implications, and (iii) agree on context-
specific refinements in the weight to improve the results. Co-creation was selected as
the validation approach due to PED targeting, being inherently context-dependent as it
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combines technical constraints (urban form, distance to resources) with normative and
strategic considerations (social vulnerability or income). Considering this, validation
requires not only internal consistency checks but also external experts’ validity to be
covered by actors with local knowledge and implementation responsibilities. Participants
were included using purposive sampling to ensure representation of the key roles involved
in PED planning and delivery. Five stakeholders representing policymakers, energy experts
and governance actors were involved in the validation process. The co-creation step
followed a replicable protocol with: (a) a short briefing on objectives and on the baseline
outputs; (b) guided review of maps and indicators to identify mismatches with local
conditions; (c) definition of priorities and constraints; and (d) consensus on adjustments
to the weighting scheme. Specifically, the weighting scheme was revised to reflect local
strategic priorities and perceived feasibility constraints identified during the session, with
changes documented and incorporated into the subsequent model run. In practice, weights
were adjusted to capture both technological emphasis (e.g., prioritizing rooftop PV and
geothermal resources over other RES options) and planning focus (e.g., assigning higher
relevance to energy demand reduction). The weightings of the indicators were agreed upon
and established through a consensus among the stakeholders involved in the co-creation
process for their definition, after an initial presentation of the methodology and the results
obtained for the baseline or control scenario.

Table 3. Weights per dimension given by Bratislava stakeholders and equal weights assignment.

Dimension and Subdimension Weight of Each
Layer (%): Equal

Weight of Each
Layer (%): Experts

Efficient buildings 16.67 35
Net zero energy imports 16.67 25

Energy flexibility 16.67 8
Affordability 16.67 7

Livability (Social cohesion) 16.66 10
Livability (Urban complexity) 16.66 15

4. Results
The results for the city of Bratislava are presented as a comparative assessment between

the equal-weights baseline scenario and the city-specific weighting scenario (Figure 4).
This side-by-side representation allows for a direct evaluation of how stakeholder-defined
priorities influence the final spatial pattern of PED suitability. As shown in Figure 4, the two
scenarios lead to clearly different suitability distributions, represented by scales and colors,
where reds represent the most interesting areas or candidates for PED implementation
and greens the opposite. While the equal-weights approach produces a more balanced
contribution of all thematic layer groups, the city-weight configuration amplifies the in-
fluence of the dimensions prioritized by Bratislava stakeholders. Consequently, several
areas change their suitability class (from least/moderately suitable to highly/most suitable,
or vice versa), resulting in different values of the suitability index and different maps of
results, even though some high-performing districts remain consistently prominent for
PED implementation across both scenarios.

To support interpretation at the neighborhood scale, Figure 4 also includes zoomed-in
views of selected locations. These detailed panels illustrate how the weighting strategy
affects the spatial continuity, fragmentation, and concentration of suitable zones within
districts, highlighting local hotspots that may be overlooked on a city-wide scale. The
results confirm that the weighting step is not merely a numerical adjustment. It is the most
decisive factor shaping the identification of priority areas for PED development in an urban
area like the Bratislava municipality.
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Figure 4. Map of the results for Bratislava (right part with equally distributed weights for each
group of layers; left part with city’s weights: giving more prioritization to the energy demand layer).
Numbers 1, 2 and 3, represent areas of the municipality with a higher zoom level.

The Bratislava case study was analyzed under two weighting schemes: a baseline
scenario with equal weights across dimensions and layers, and a second scenario using
city-specific weights reflecting Bratislava’s stakeholders’ priorities. Under equal weights,
the district suitability index ranges from 47.33 to 64.84, with an overall average of 55.10.
The highest-scoring districts are Staré Mesto (64.84), Karlova Ves (62.87), Dúbravka (61.89),
Lamač (60.60) and Petržalka (58.94), indicating a concentration of suitability in central and
inner-city areas (Table 4).

When applying city weights, the suitability range becomes 29.30 to 48.99 (mean 37.16),
while the leading districts remain Staré Mesto (48.99) and Karlova Ves (43.34). In this
scenario, Petržalka (42.68) and Ružinov (42.48) move up in the ranking, followed closely
by Dúbravka (42.11) and Nové Mesto (40.54). Overall rankings are broadly consistent
between scenarios, but relevant shifts are visible: Podunajské Biskupice shows the largest
improvement (from 17th to 9th, reaching 35.18), while Lamač (from 4th to 7th), Čunovo
(from 12th to 15th) and Záhorská Bystrica (from 14th to 17th) are the districts that fall the
most in the ranking. These differences confirm that the city-weight configuration modifies
the spatial prioritization of districts, likely favoring areas that better match Bratislava’s
emphasis on energy demand and selected local RES options (e.g., rooftop PV and geother-
mal), while still keeping core districts among the most suitable candidates for a potential
PED implementation.

Figure 5 outlines in purple the location of the two districts with the highest potential
for developing a PED, according to the results obtained from applying the MCDA algo-
rithm. It should be noted that these two districts are characterized by a high building
density; therefore, they demand large amounts of energy but also have significant rooftop
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potential for deploying renewable energy generation solutions. It should be noted that
this statement is corroborated by the reddest areas in the figure, which are where a high
building density predominates.

Table 4. Mean values results of the application of the different weights.

District Mean Value with Equal
Weights

Mean Value with City
Weights

Devínska Nová Ves 54.00 35.07
Záhorská Bystrica 49.91 29.30

Devín 49.95 32.05
Dúbravka 61.89 42.11

Lamač 60.60 38.77
Nové Mesto 57.39 40.54

Rača 53.22 38.67
Vajnory 52.77 34.93

Karlova Ves 62.87 43.34
Staré Mesto 64.84 48.99

Ružinov 58.48 42.48
Vrakuňa 55.28 35.16
Petržalka 58.94 42.68

Podunajské Biskupice 47.33 35.18
Jarovce 48.67 29.57
Rusovce 48.06 31.75
Čunovo 52.56 31.12

 

Figure 5. Location of the most suitable district for PED implementation. Grey dashed lines represent
districts in Bratislava municipality.

As part of the suitability index generation process, the MCDA algorithm also produces
the normalized dimensions in raster format, with a spatial resolution of 5 m, matching the
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same resolution as in the suitability index. These raster layers are stored in the algorithm
working repository as functional variables to be represented. These raster files can be of
great interest for analyzing and understanding the factor or factors behind the resulting
suitability index value. It should be noted that these dimensions are the result of an
aggregation process using a weighted mean, so knowing the value of each dimension can
be essential when determining the specific weight of each dimension for generating the
final suitability index. Some examples of these raster files that represent the dimensions are
provided in Figures 6 and 7.

Figure 6. Suitability classes for Net zero energy imports dimension: equal and user defined weights.
Numbers 1, 2 and 3, represent areas of the municipality with a higher zoom level.

Figure 6 illustrates the suitability classes of the Net zero energy imports dimension
under equal and city-specific weighting schemes. The application of city-defined weights
results in a more selective spatial classification, with several areas shifting to lower suitabil-
ity in line with Bratislava’s prioritization of energy demand and local renewable energy
options. At the same time, areas with favorable demand–supply characteristics maintain
higher suitability across both scenarios. Overall, the figure shows how weighting choices
shape spatial selectivity while preserving the identification of core high-potential areas for
PED development.

Figure 7 compares the suitability classes of the energy flexibility dimension. Under
equal weights, suitability is more evenly distributed, with large portions of the city classified
as moderately to highly suitable. When city-defined weights are applied, the spatial pattern
becomes more selective, with a clearer concentration of highly and most suitable areas and
a reduction in suitability in other zones. Overall, the figure illustrates the strong influence
of weighting choices on the spatial expression of energy flexibility potential.
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Figure 7. Suitability classes for Energy flexibility dimension: equal and user defined weights.
Numbers 1, 2 and 3, represent areas of the municipality with a higher zoom level.

5. Discussion
The Bratislava case study illustrates how the proposed MCDA framework based on

geolocated data can operationalize the concept of Positive Energy Districts by translating
high-level PED dimensions into spatially explicit suitability patterns. The comparative
analysis between the equal-weights baseline and the city-specific weighting scenario shows
that the weighting configuration substantially affects absolute suitability values and the
spatial extent of high-scoring areas, but with a moderate effect on the relative ranking of
districts. Staré Mesto and Karlova Ves remain consistently among the most suitable districts
in both scenarios, while others, such as Podunajské Biskupice, experience notable shifts in
ranking when priorities under local knowledge are introduced in the PED assessment. This
confirms that the underlying spatial structure of opportunities and constraints is relatively
robust, whereas the selection of weights acts as a powerful lever to adjust priorities within
that structure [8].

These findings are consistent with the broader PED literature, which emphasizes
both the importance and the difficulty of defining operational assessment frameworks
around the PED concept. Previous work has stressed that strict annual positive energy
balances can be a demanding requirement, especially in dense urban areas with limited local
renewable potential, and has recommended broader assessment schemes that combine
energy, environmental, economic and social indicators [6,19]. By constructing the five
dimensions (efficient buildings, net zero energy imports, energy flexibility, affordability
and livability) the proposed MCDA approach aligns with these recommendations and
offers a concrete way to integrate multiple performance aspects into a single spatial index.
In particular, the inclusion of affordability and livability dimensions responds to calls
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to frame PEDs as socio-technical systems that must address resilience, social equity and
quality of life, rather than only optimized energy balances [4,5].

The observed stability of the district ranking across weighting schemes also links to
the discussion on PED typologies and context-dependency. Some authors, like refs. [5,10],
highlight that PED designs are strongly shaped by local building stocks, infrastructures
and institutional conditions, and that not all districts can realistically become fully energy
positive. In Bratislava, central districts such as Staré Mesto and Karlova Ves exhibit high
suitability in both scenarios, largely due to a combination of dense building stock (and thus
high rooftop PV potential) and favorable values in several socio-economic and urban-form
indicators. This suggests that the proposed MCDA framework can help to reveal potential
PED candidates that align with previous qualitative insights into where PEDs are most
likely to emerge [10], while still allowing planners to adjust emphasis through weights.

From a methodological perspective, the results reinforce well-known properties of
MCDA supported with GIS data: suitability patterns are highly sensitive to the choice
of criteria and weights, and weight definition should be an explicit and participatory
process [8,29]. The comparison between the equal-weight scenario and the city-specific
scenario shows that stakeholder-defined weights make the suitability landscape more
selective, concentrating high scores in fewer districts and downgrading others that do
not match Bratislava’s priorities (e.g., emphasis on energy demand, available PV rooftop
potential and geothermal potential). This behavior is consistent with sensitivity analyses
in land suitability studies, where small changes in weights can substantially alter the
extent and fragmentation of suitable areas [30]. The explicit combination of map-based
visualization with aggregated mean values by district is therefore a strength of the proposed
approach, as it supports both spatial interpretation and quantitative comparison, helping
to detect cases where small visual differences may hide significant numerical changes, or
the opposite situation.

The Bratislava application also extends previous PED-mapping efforts like [16], where
they demonstrated the potential of GIS–MCDA for identifying PED boundaries by com-
bining resource availability, infrastructure and socio-economic layers. However, their
approach faced limitations related to data availability and harmonization across cities.
The present study builds on that work by (i) explicitly structuring the assessment around
five PED-related dimensions that can be reused in other cities; (ii) developing the PED
identification approach in an open-source Python pipeline based on GeoJSON and standard
European datasets (e.g., CORINE Land Cover (CLC) [20], Urban Atlas Land Cover [22],
PVGIS [30]); and (iii) emphasizing replicability and transferability from the outset, in line
with the gaps identified by [6,7,19]. As a result, this paper obtains a methodology that not
only provides city-specific results for Bratislava but can also be integrated into broader
replication strategies, to cover the identification of potential PEDs in other cities.

In relation to PED design and planning frameworks, the proposed methodology
complements developments such as tools for PED planning [10] or the PED assessment
schemes of [6]. While those contributions focus on defining process steps, assessment
methodologies and key performance indicators, the present work adds a spatial screening
component that can support early-stage decisions on where to concentrate more detailed
analyses, simulations or co-design processes. In practical terms, the suitability maps
and district-level rankings can be used to narrow down candidate areas for in-depth
PED feasibility studies, energy modeling or participatory workshops, thereby helping
municipalities with limited analytical capacity to focus their efforts where the combination
of technical potential and socio-urban conditions are most promising.

It is necessary to highlight that the inclusion of affordability and social cohesion
indicators contributes to operationalizing the socio-technical perspective highlighted in
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recent PED literature [4,5]. By incorporating variables such as energy expenditure, income,
vulnerability and population dynamics, the framework makes possible the prioritization
of areas where PED interventions could contribute simultaneously to decarbonization,
contributing at the same time to include energy poverty or social vulnerability aspects. This
is aligned with the growing recognition that PEDs should also support just and inclusive
energy transitions, rather than only delivering aggregate energy or emissions benefits [5].

Despite these strengths, several limitations have been identified. First, the approach
relies on the availability and quality of spatial datasets, which may vary substantially
between cities. Although the use of open and harmonized European datasets enhances
transferability, key variables like detailed building energy demands, local socio-economic
statistics or investment plans still require city-specific data collection and modeling efforts.
This data dependency is consistent with challenges reported in other GIS-based energy
planning studies [9,11–13,16]. This could be an obstacle for the algorithm’s application in
cities with limited data infrastructure. Second, the current implementation is essentially
static: it captures PED suitability under present conditions and does not model temporal
dynamics such as demand evolution, climate change impacts, or technology cost trajectories.
Extending the framework to incorporate scenario-based temporal analyses or coupling
it with dynamic energy system models would provide a more comprehensive basis for
long-term PED strategies, as suggested by [6,19].

Third, it is necessary to highlight stakeholder engagement as a tool to create consistent
end results. Stakeholder involvement has been included through the definition of city-
specific weights, the diversity of stakeholders being key to improving the obtained results.
The involvement of technical experts, in addition to citizens, technology providers, and
other local actors, could further enrich the weighting process, strengthen the legitimacy of
the results, and better reflect the multi-actor governance challenges documented in PED
projects [4,10]. Finally, the suitability index is an integrative but simplified representation of
complex realities. It does not explicitly account for network constraints, detailed regulatory
barriers, or project-level financial feasibility, which will need to be addressed in subsequent
PED deployment phases.

Overall, the obtained results confirm that the proposed MCDA framework based on
geolocated data responds directly to several gaps identified in the PED literature, such as
the need for spatially explicit, replicable methodologies for PED site selection [5,7,16,19],
the integration of technical and socio-economic dimensions in PED definition [4,5], and a
better understanding of how weighting choices influence spatial prioritization [6,8,31]. By
providing both maps and aggregated indicators, and by implementing the full workflow
in an open and modular Python pipeline, the methodology offers a practical tool that
municipalities can adapt to their own contexts. Future work will focus on expanding the
framework for its application to additional cities, testing the effect of different weights
in indicators and dimensions, and explore the capacity to integrate dynamic variables in
defining potential areas for the implementation of a PED, in addition to moving towards
participatory planning processes for PEDs.

6. Conclusions
This study has addressed the two research questions posed in the introduction by

demonstrating both the capabilities of GIS-based methodologies for PED spatial planning
and the conditions that affect their replicability across different urban contexts.

Regarding the GIS-based methodology, the proposed GIS-based MCDA algorithm
proves to be an effective and transparent framework for integrating heterogeneous spatial
datasets relevant to PED planning. The obtained results highlight that the framework
enables a flexible and transparent integration of heterogeneous spatial datasets relevant
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to PED planning. In addition, they underline the importance of combining spatial visual-
ization with aggregated indicators, such as mean suitability values, to fully understand
the implications of weighting choices. By applying and comparing alternative weighting
strategies for PED layers and dimensions, the methodology illustrates how suitability
maps can be systematically adapted to different planning objectives. Incorporating local
knowledge into weighting schemes, it also enhances policy relevance and helps ensure
that PED strategies are not only technically sound but also contextually grounded and
socially meaningful.

In relation to the second research question, the findings indicate that replicability is
primarily driven by the availability and coherence of spatial datasets, the selection of indica-
tors, and weighting schemes reflecting local priorities. Although absolute suitability values
vary when city-specific weights are applied, the relative ranking of districts remains largely
stable. This robustness reveals a strong spatial coherence in the underlying geolocated,
infrastructural, and socio-economic patterns that shape PED potential, regardless of specific
weighting assumptions. Such spatial stability increases confidence in the identification of
high-priority areas and supports the transfer of the methodology across cities, provided
that local data and planning objectives are appropriately incorporated.

Overall, the study demonstrates that alternative weighting strategies can substantially
reshape the spatial distribution of PED suitability while preserving consistent relative
spatial patterns. The comparison between a neutral, equal-weight configuration and a
context-sensitive, city-prioritized scenario illustrates how stakeholder assumptions influ-
ence planning outcomes. The equal-weight model offers a balanced and inclusive overview
suitable for preliminary screening and stakeholder engagement, whereas the city-specific
weighting scheme produces a more selective and strategically focused suitability pattern
aligned with real-world decision-making needs.

Finally, the PED modeling framework presented in this study offers a transferable,
open-source methodology that other cities can adapt to their own data, priorities and
institutional settings to identify their most suitable areas for PED implementation. In
this sense, it provides a practical contribution to the emerging toolbox for PED planning,
supporting cities that seek to navigate the spatial complexity of PED implementation in
line with their long-term climate and urban development objectives.

Future research should further expand the proposed GIS-based MCDA framework
by exploring dynamic and multi-temporal datasets to enhance the spatial identification of
PED-suitable areas under evolving urban, energy, and climate conditions. In accordance
with this, integrating time-dependent variables, for instance, renewable generation profiles,
demand evolution, and urban development scenarios, could improve the capacity of GIS-
based methodologies to support long-term PED planning and adaptive decision-making.
Additionally, the incorporation of participatory approaches and multi-actor weighting
mechanisms would allow for a more systematic representation of stakeholder preferences
within the spatial analysis.
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