

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

• • • •

:

...

••

How will electrification impact our grids?

...

Georeferenced Methodology for Urban Impact Assessment.

...

Online17/10/2024

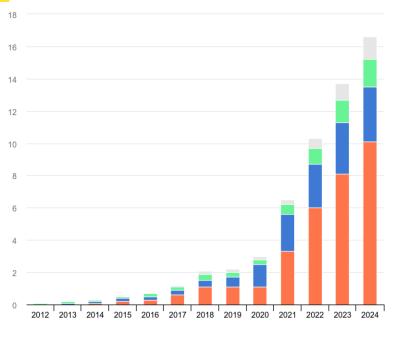
The authors are thankful for the European Commission funding from project DriVe2X, grant No. 101056934

				• • • • • • •
•••			 ••	
		•	 · · ·	
	•••	•	 • • •	
			 • • •	

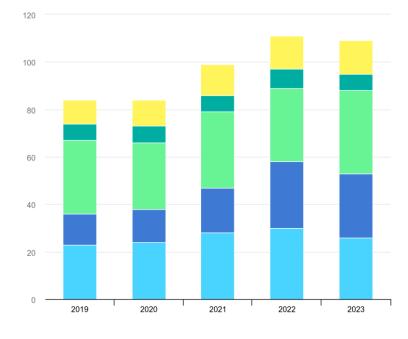
Need for decarbonization

- Reduction of greenhouse gas emissions
- Transformations in urban environments and energy consumption

tecnal:a


<u>Electric vehicles</u> and <u>heat pumps</u> will play a key role in the decarbonization of the urban environment

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE



...

. .

ā

EV sales evolution

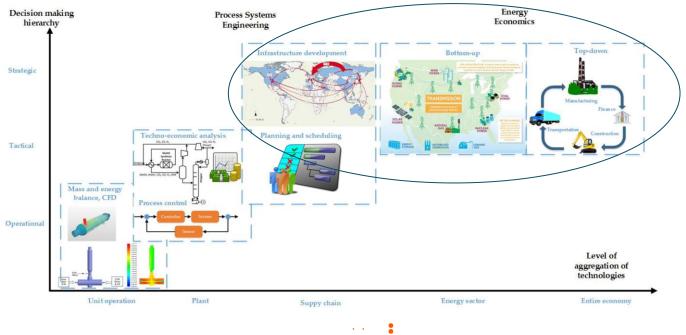
Heat pump sales evolution

IEA (2024), Electric car sales, 2012-2024, IEA, Paris https://www.iea.org/data-and-statistics/charts/electric-car-sales-2012-2024, Licence: CC BY 4.0

IEA (2024), Heat pump sales by country or region, 2019-2023, IEA, Paris https://www.iea.org/data-and-statistics/charts/heat-pump-sales-by-country-or-region-2019-2023, Licence: CC BY 4.0

· · · - •

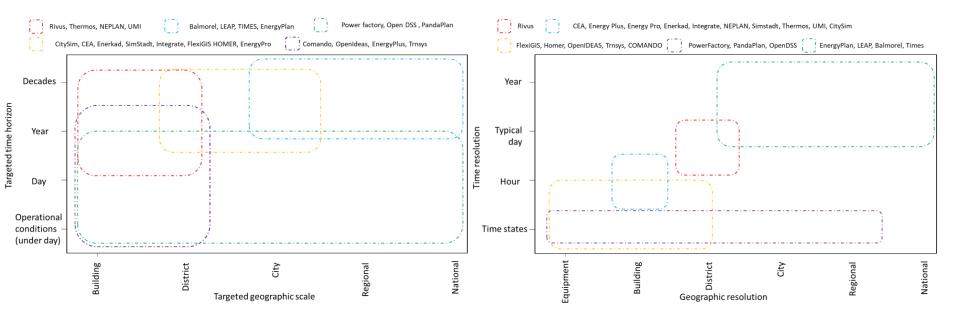
Our <u>electricity</u> <u>infrastructure</u> must be ready to accommodate transition



High complexity transition

Energy Systems Modelling :

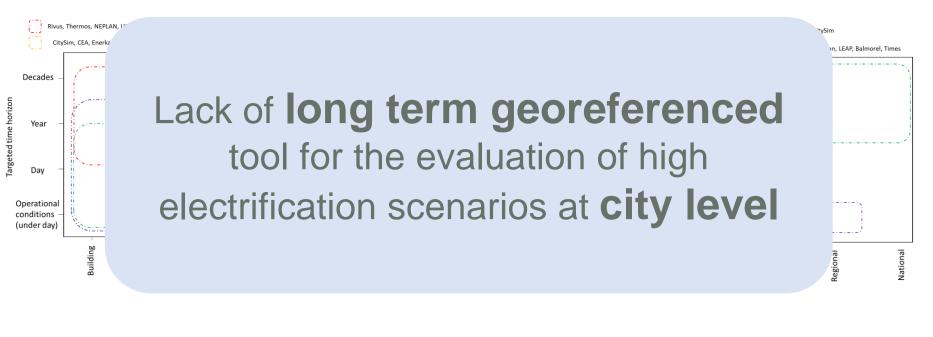
- Simulation and analysis of complex systems
- Long-term planning and design



6

• •			
• •		 ••	
	-	 • • •	

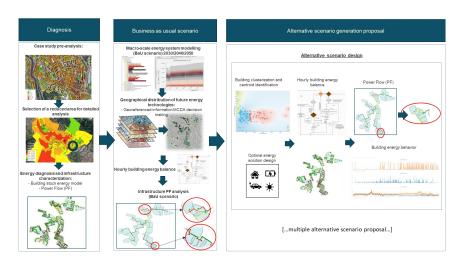
Clear need for planning ahead

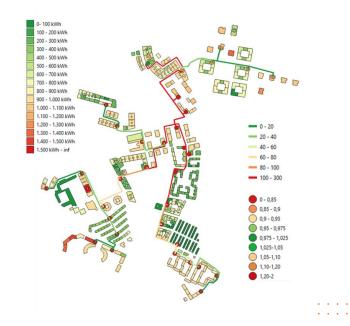

J. Pedrero, E. Arrizabalaga, D. García, N. Hermoso, I. Muñoz, and P. Hernández, "Review of georeferrenced energy planning tools and methods for the assessment of decarbonization scenarios," in 9th International Conference on Smart Energy Systems, 2023, pp. 12–13. [Online]. Available: https://www.researchgate.net/publication/378527110

7

			••	
• •	•		· · ·	
• •	•			
		• • • • • • • •		

Clear need for planning ahead

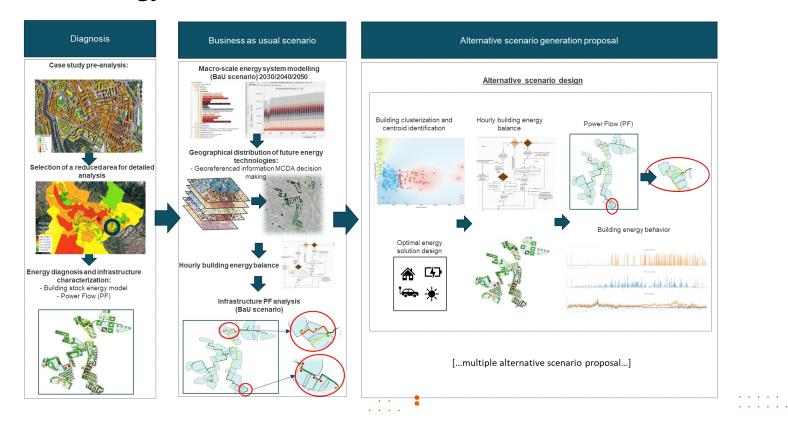

J. Pedrero, E. Arrizabalaga, D. García, N. Hermoso, I. Muñoz, and P. Hernández, "Review of georeferrenced energy planning tools and methods for the assessment of decarbonization scenarios," in 9th International Conference on Smart Energy Systems, 2023, pp. 12–13. [Online]. Available: https://www.researchgate.net/publication/378527110



Research objective

Development of methodology for the georeferenced assessment of high electrification scenarios

Demonstration of the methodology through a case study


.

. .

• •		 ••	
	•	 	• • • •
	•	 • • •	• • •
			• • • •
			• • •

Overall methodology

...

Modelling techniques used

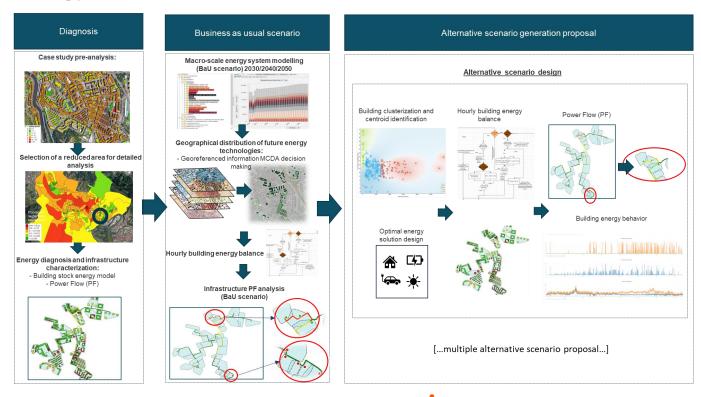
...

1. Building stock energy model

::

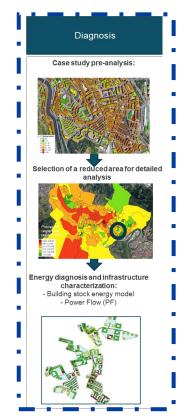
. .

- 2. City energy strategy integrated model
- 3. Georeferenced multi criteria decision making
 - 4. Power flow calculation
 - 5. Representative building characterization
 - 6. Building energy system design optimization
 - 7. Hourly balance calculation



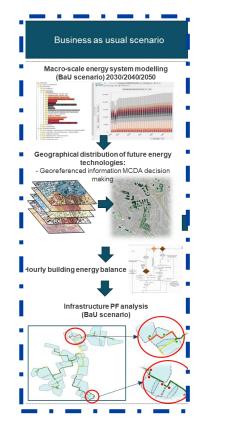
.

• •			••	
• •	•			
• •	•	• • • • • • • • • •		
		• • • • • • • •		


Methodology workflow

...

Methodology workflow


Diagnosis: Represents the current status of the case study

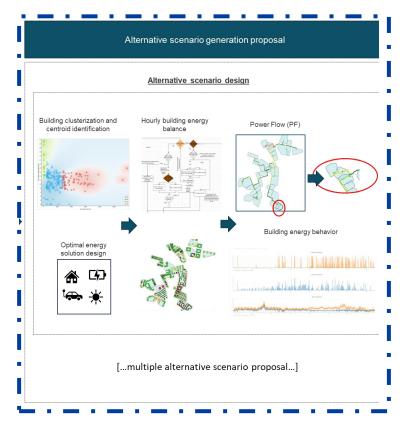
Steps:

- 1. Case-study comprehension and pre-analysis
- 2. Selection of a reduced area for detailed analysis
 - 3. Building stock energy model
 - 4. Energy balance calculation
 - 5. Power Flow Calculation

Methodology workflow

Business as Usual:

Represents where we are going


Serves as a reference framework

Steps:

- City energy strategy integrated model
- 2. Georeferenced multi criteria decision making
 - 3. Energy balance calculation
 - 4. Power Flow Calculation

Methodology workflow

Alternative scenario proposal: Represents where can we go if we make changes

Steps:

- 1. Representative building characterization
- 2. Building energy system design optimization
 - 3. Energy balance calculation
 - 4. Power Flow Calculation

				•	•		•	•	•	•
		••		•	•	•	•	•	•	•
-	-	•					•	•	•	•
•		•						•	•	•
	•	•					•	•	•	•
							•	•	•	

Case study: Bilbao

Selected area:

•

Bilbao's residential neighborhood

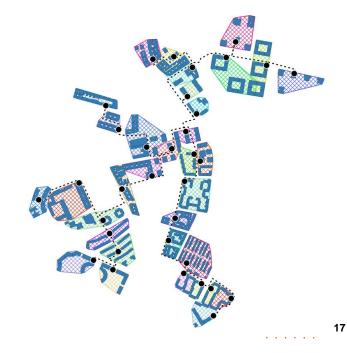
Main selection criteria: data availability

		Cor	Construction period			
Main building	No	Pre-1944	1945-	1970-	1980-	Total
use	dat		1969	1979	2006	
	а					
No data	3					3
Commercial		1				1
Education				2	1	3
Hotel		1				1
House		100	1			101
Office			1		1	2
Apartment		11	206	71	56	344
buildings						
Sport facilities					1	1
Total	3	113	208	73	59	456

. .

. .

16


.

• •		 ••	• • • • • • •
• •		 • • •	• • • •
	•	 	

Mainly natural gas Electricity Cooling Heating DHW consumption consumption consumption consumption [GWh] [GWh] [GWh] [GWh] 26,8 12,9 23,4 0

Synthetic network build due to lack of data availability: modified IEEE 34-bus

1.400 - 1.500 kWh

1.500 kWh - inf

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE	
Diagnosis	
0- 100 kWh	
200 - 300 kWh 300 - 400 kWh	
400 - 500 kWh	
500 - 600 kWh	
500 - 600 kWh 600 - 700 kWh	
700 - 800 kWh	
800 - 900 kWh	
900 - 1.000 kWh	
1.000 - 1.100 kWh	
📃 1.100 - 1.200 kWh	
1.200 - 1.300 kWh	70
1.300 - 1.400 kWh	10

. .

. .

. .

- 0 - 20

- 20 - 40

- 40 - 60

- 60 - 80 - 80 - 100

- 100 - 300

• 0 - 0,85

0,85 - 0,9 0,9-0,95

0,95 - 0,975 0,975 - 1,025

• 1,025-1,05

0 1,05-1,10 • 1,10-1,20 • 1,20-2

...

	Diagnosis
Maximum line loading (%)	57,35
Average line loading (%)	0,874

.

. . . .

. . . .

.

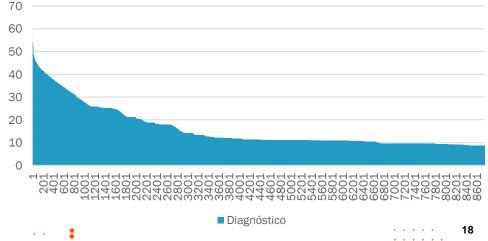
. . .

õ

. . . .

. . . .

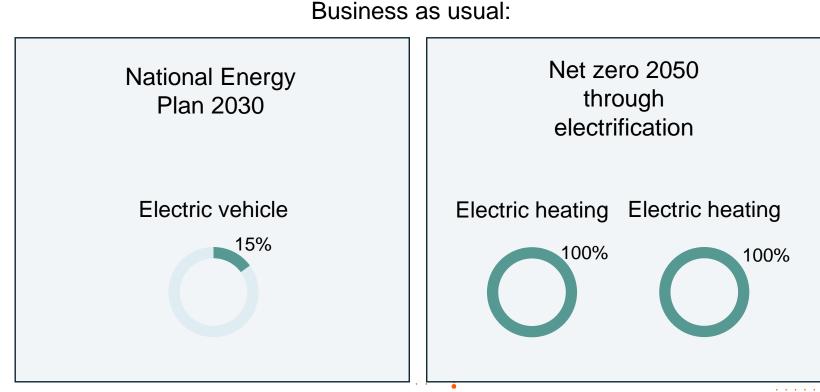
.


. . .

. . .

.

. . .


.

••				••	
	• •	•			
	• •	ě	• • • • • • • • • •		

Scenario proposal

_____ 19

Scenario proposal

Alternative scenario

Net zero 2050 No Batteries

-100% EV → night charge
- Heating through HP
- PV generation

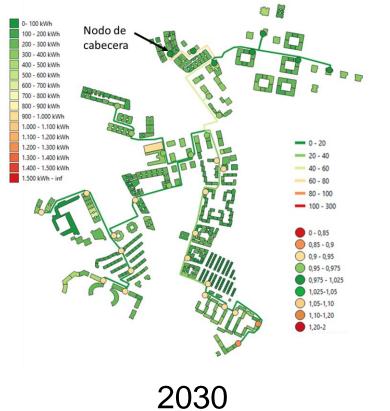
Net zero 2050 Batteries

-100% EV → night charge - Heating through HP

- PV generation

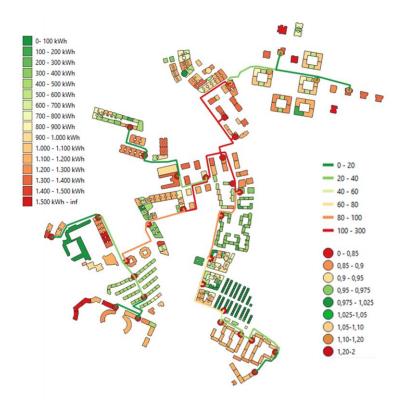
- Optimized battery (optimization criteria: minimize electricity bill)

.


tecnal:a	
MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE	

.

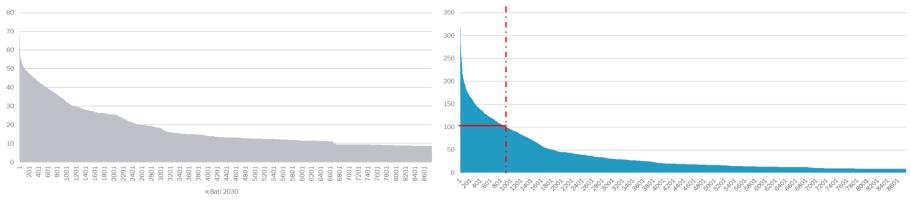
			•	•		•	•	•	•
		••	•	•	•	•	•	•	•
-	•	•				•	•	•	•
	•	•					•	•	•
		•				•	•	•	•
						•	•	•	


Scenario results

...

· ·

ā



. . . .

2050

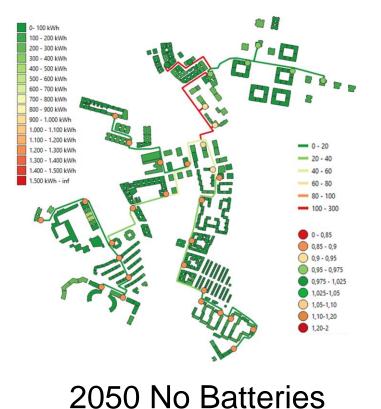
-	••	• •				
tocnalea		• •	•	• • • • • • • •		
lechala		• •				
			•		• • •	
MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE					· · · ·	

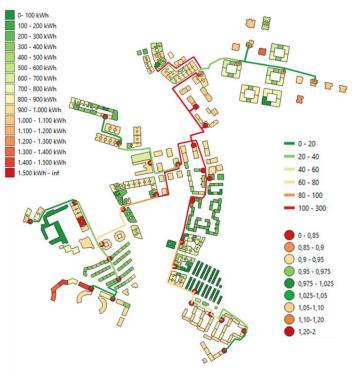
Scenario results

.

ā

. .

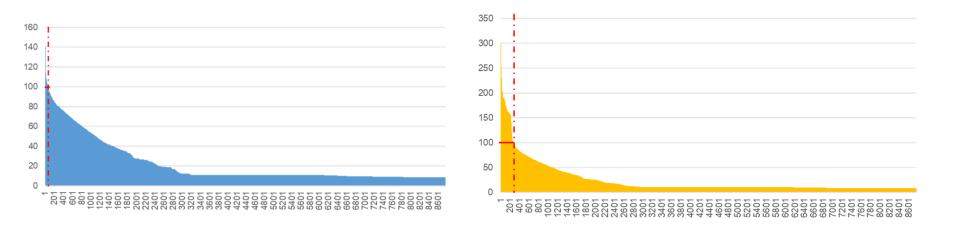

BaU 2050


2050

2030

	••			
tecnal:a		•••	:	 ••
MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE				 • • •

Scenario results


2050 No Batteries 23

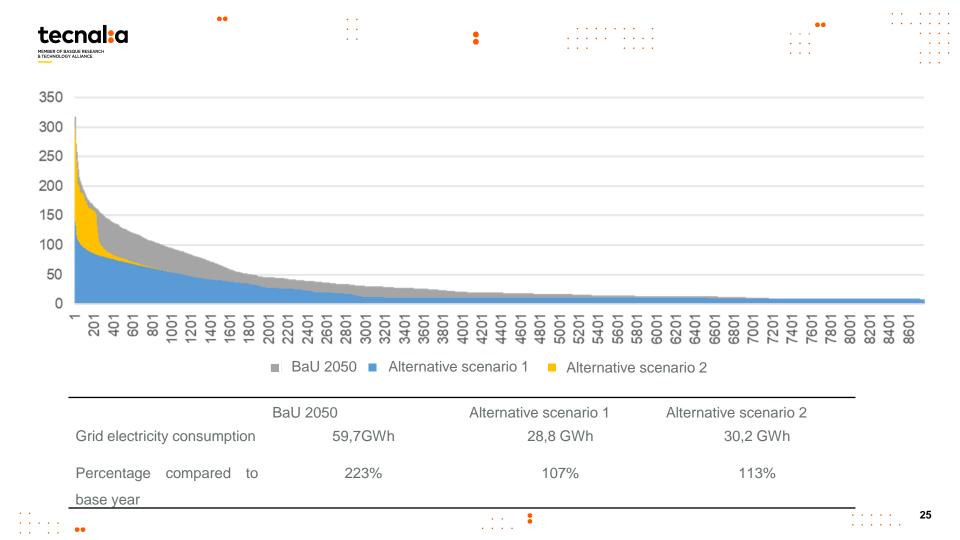
. . . .

	••				••	
tecnal:a		• •	:	• • • • • • • • • • •		• • • •
MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE						

Scenario results

...

-


. .

. . . .

2030

2050

· · · · · 24

Main conclusions

- Alternative scenarios: successfully reduce grid load
- Essential elements for climate neutrality:
 - Heat pump \rightarrow high efficiency levels
 - Incentives for vehicle charging during off-peak hours
- Self-managed batteries: new challenge for the grid
 - Need for regulation that takes prosumers and operators into account

. . . .

Main conclusions

...

•••

- In the short term (2030), electrification of mobility is **manageable** for the grid infrastructure.
- In the long term (2050), full electrification could overload the grid, with consumption exceeding 300% of capacity.
- Adapting regulatory and incentive schemes for flexibility systems is a major challenge

To know more:

https://drive2x.eu/

SES conference 2023: <u>Smart Energy Systems – international conference</u>

Review of georeferrenced energy planning tools and methods for the assessment of decarbonization scenarios (1)

EEM24 conference: eem24.khas.edu.tr - EEM24

Methodology for the geo-referenced urban-scale assessment of high electrification scenarios (2)

<u>Sustainable Cities and Society</u> From rooftops to roads: Bilbao's geospatial solar and EV fusion https://doi.org/10.1016/j.scs.2024.105290 (3)

(2)

(1)

. .

.

.

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

•

Prospective energy modelling laboratory | Tecnalia

Juan.pedrero@tecnalia.com

••				•		•	•	•	•	•	
				•	•	•	•	•	•	•	
					•	•	•		•	•	
				•		•	•				
				•	•	•	•				
	•	•	•								
	•	•	•								

...

. . .

tecnalia.com